
Session 12:
Community Detection in Social Networks��

ÿ

���� �•	Ã�� —�¾���B	Â
�	ª	þ�C��

�R�:�:�:�������� �å
�	 �S��

Community Detection in Social Networks ��

>Þ��

!   	o�4	i	•	•	•	u	z	¡�4	a	±	-	e	‘	—	}	x	U	C
N
�)	˜�4	h	Q	b	›	‡
�!�W�B�T �"�C	Q
ž	"	%	Ä	#	�	=	�	F	�	'	�	�	m	u	i	™	¥ ��

!   	o�4	i	•	•	•	u	z	¡�4	a	-	Àò��
9	÷	*
ý	ß	# ��

!   12-1 Using Content and Interactions for Discovering Communities
in Social Networks
!   	˜�4	h	- �L�Q�W�H�U�H�V�W	A
…_	�	�	e	‘	—	}	x	U	Å	Ä ��

!   12-2 Community Detection in Incomplete Information Networks
!   	Ö	À	Ó)	Z	u	j
r
>	�	
)	�	'	�	-	e	‘	—	}	x	U	Å	Ä ��

!   12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality
!   	€�4	{	-
N
�
�	-
P�� �|�%�H�W�Z�H�H�Q�Q�H�V�V���&�H�Q�W�U�D�O�L�W�\�|	Q�� 	b	›	‡	���

ì	*�Œ	×	�	K	J	Ã	¼	&	A�•
è	Ó	*
Q
´ ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

	˜�4	h	- �L�Q�W�H�U�H�V�W	A
…_	�	�	e	‘	—	}	x	U	Å	Ä��

>ß��

!   	˜�4	h	Ñ	-	V	¥	q	›	a	i	™	¥	b	›	‡	Q
9	÷ ��
!   	b	›	‡�!�W	�	�	&	.
p	à	&	�)	� ��

!   �N	æ	=	&	C	I
�	I	�)	�	�	(�L�Q�W�H�U�H�V�W	.�Z	%	�	J�O	�	'	A	�	J ��

!   	“	u	m�4	j	-	°�.	Q	Ä)	�	'	�	�)	� ��

!   �Ã	�	��{�� ��

•
”	Q
€
‚	�	J	-	*�•
Ÿ	Ó)	e	‘	—	}	x	U	Q	Å	Ä ��

!   	•	V	¥	z��
0	ã	ø	%	Q
…_	�	�	e	‘	—	}	x	U	Å	Ä ��
!   �&�R�Q�W�H�Q�W�B	“	u	m�4	j	-�N
Ô	z	†	u	a�C ��
!   �/�L�Q�N���B	b	›	‡�!�W �� �t	
	H�t	*	“	u	m�4	j	���	H	K	J

	
�C ��
!   �,�Q�W�H�U�D�F�W�L�R�Q���W�\�S�H�B�{ �� �%�U�R�D�G�F�D�V�W���W�Z�H�H�W�����U�H�S�O�\�����5�7�C��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-1 Using Content and Interactions for Discovering Communities in Social Networks !

NEW!

	“	u	m�4	j	-	Ç
�	”	y	•	Q
€
g��

>à��

!   �7�R�S�L�F���8�V�H�U���5�H�F�L�S�L�H�Q�W���&�R�P�P�X�Q�L�W�\���0�R�G�H�O��	Q
€
g ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

�P�A	-	À� ��
���������,�Q�W�H�U�D�F�W�L�R�Q���W�\�S�H	-	À� ��
��������
-
&	»	-	À� ��

	z	†	u	a	�	' �� 	e	‘	—	}	x	U	�	' ��

����	e	‘	—	}	x	U	-	À� ��
������
&	»	�
Ú	e	‘	—	}	x	U	*	“	u	m�4	j	Q��	J	'	�	-	z	†	u	a	À� ��

��
&	»	�	' ��

����  ��
&	»	-	e	‘	—	}	x	U	À�	*��	"	% �� 	“	u	m�4	j	Q��	J 	e	‘	—	}	x	U 	Q	à	Ò ��
����  	e	‘	—	}	x	U 	-
-
&	»	À�	*��	"	% ��
-
&	» 	Q	à	Ò ��3
/	¯�C ��
����  	e	‘	—	}	x	U 	- �,�Q�W�H�U�D�F�W�L�R�Q���W�\�S�H	À�	*��	"	% �� �W�\�S�H	Q	à	Ò ��
����  ��
&	»	�	e	‘	—	}	x	U	*	“	u	m�4	j	Q��	J	'	�	-	z	†	u	a	À�	*��	"	% �� ��

	z	†	u	a 	Q	à	Ò ��
����  	z	†	u	a 	-�P�A	À�	*	A	'	$	�	% �� 	“	u	m�4	j	®
§ 	Q	à	Ò ��

��
&	»	�
Ú	“	u	m�4	j�B 	®
§ �� �L�Q�W�H�U�D�F�W�L�R�Q���W�\�S�H��
-
&	» �C	Q	Ç
� ��

!  
Ú	À�	-	ƒ	›	“�4	q	Q�Ó	Ò	�	K	/	e	‘	—	}	x	U	Q	Å	Ä	&	�	J ��

12-1 Using Content and Interactions for Discovering Communities in Social Networks !

�C�Ë	”	y	•	G	I�8	-	È	�	e	‘	—	}	x	U	Å	Ä	Q�x
���

>á��

!   �7�Z�L�W�W�H�U�����(�Q�U�R�Q�B	“�4	•�C	y�4	q	m	u	z	Q	÷	�	%	ð�a ��

!  
€
g	”	y	•	&	Å	Ä	�	� 	e	‘	—	}	x	U	-�8 	Q�C�Ë	”	y	•	'
û�Ž ��

!   �®	#	-
P��	&�C�Ë	”	y	•	'
û�Ž	�
€
g	”	y	•	-
°
[
� 	Q
¨
s ��
!   �&�8�7�����&�R�P�P�X�Q�L�W�\���8�V�H�U���7�R�S�L�F������	b	›	‡
r
>�� �,�Q�W�H�U�D�F�W�L�R�Q���7�\�S�H)	� ��

!   �&�$�5�7�����&�R�P�P�X�Q�L�W�\���$�X�W�K�R�U���5�H�F�L�S�L�H�Q�W�����,�Q�W�H�U�D�F�W�L�R�Q���7�\�S�H)	� ��

!   �ì
|
P����� �)�X�]�]�\���0�R�G�X�O�D�U�L�W�\��
!   	•	u	z	¡�4	a	-	À
¸	-�8	Q�þ	J
P�� �0�R�G�X�O�D�U�L�W�\�B�N	e	‘	—	}	x	U	Ô	-	Z	u

	j
/�O�4�N	Z	u	j	Q	›	¥	r	’	*�Q	"	�	Ã	¼	-
��D�•�O�C	Q �� 	À
¸	�
¨
è	Ó
)	Ã	¼	*	A	Ì
â	&	�	J	G	����Q ��

!   �ì
|
P���®�� �3�H�U�S�O�H�[�L�W�\��
!  
I�A	”	y	•	-�ì
|
P��	'	�	%	G	�
9	÷	�	K	J ��

!   	x	k	z	y�4	q	*	Ì	�	%	”	y	•	�	(K	�	�

	%	.	=	"	%	�	J	
�ì
| ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-1 Using Content and Interactions for Discovering Communities in Social Networks !

	Ö	À	Ó)	Z	u	j
r
>	�	
)	�	'	�	-	e	‘	—	}	x	U	Å	Ä��

>â��

!   	Z	u	j
r
>	�
��� 	�	%	�	J	b	›	‡	�	Ì�4 ��
!   �C�Ë�]�¢��	Z	u	j
r
>	�	ø	%�C
t	'	�	�	Ð
€ ��

!   	Z	u	j	-
¥
î	�	ø	%	N	
	"	%	�	J	õ	�	��i�` 	�	�	�	#	
	�	J ��

!   �{�� �7�H�U�U�R�U�L�V�W���D�W�W�D�F�N���Q�H�W�Z�R�U�N��
!   	€�4	{��	x	Ÿ�5�Ê �� 	Ê	�
L�ö	*	G	J�5�Ê	-	'	�	Z	u	j	Q�Q	J ��
!   �Ñ
*	�
$	=)	�	'	Ê	�
L�ö	-�5�Ê	
	(�	
	N	
	H)	� ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-2 Community Detection in Incomplete Information Networks !

Structure view Node attribute view for n1~ n9

n1

n2

n3

n4

n5

n6

n8 n9

n7

A
ttr

ib
ut

e_
ba

se
d

cl
us

te
rin

g
O

ur
 m

et
ho

d

Mahalanobis distance

Euclidean distance

n1
n2

n3

n4

n5
n6

n8

n9 n7

n1
n2

n3

n4

n5
n6

n8

n9 n7

n1 n2
n3

n4

n5

n6

n8

n9 n7

n1

n2

n3

n4

n5

n6

n8 n9

n7

n1

n2

n3

n4

n5

n6

n8 n9

n7

In
pu

t

local information regions

n3

Figure 1: Comparison of different clustering methods on
incomplete information networks with missing edges.

resent the relations between them. Usually, it is very
difficult to resolve all of the links within a food web.
However, it is relatively easier to figure out some local
regions within the food web. Discovering communities
in these incomplete food webs can help us identify mi-
cro ecosystems and the corresponding living organisms
of each micro ecosystem.

Finding communities in incomplete information networks
is a challenging task. Conventional graph-based clustering
methods can not be directly applied to it. The reason is
that traditional graph clustering methods, such as normal-
ized cut based methods [24] and modularity based methods
[19], mainly focus on the topological structure of the net-
work. Since most of the links are absent in incomplete infor-
mation networks, it is impossible to cluster the network with
this kind of methods. As shown in the middle level of Fig-
ure 1, if we cluster the nodes using the traditional attribute
based methods such as k-means, the most likely result is that
we place nodes with the most similar attributes in the same
cluster. However, the nodes which are densely connected
in structure may not necessarily mean they have the most
similar attributes, i.e., they may be only similar on a subset
of the attributes. For example, in the food web networks,
a community usually stands for a micro ecosystem and can
contain various kinds of living organisms, which can have
very different attributes. Recently, some new algorithms
[31] which perform clustering based on both structures and
the attributes of the network are proposed. However, they
can not be applied on incomplete information networks due
to the absence of the complete linkage structure.

Given the assumption that the structure of the network

has a close relation with attributes of each object in the
information network, in this paper, we propose a novel ap-
proach for community detection in incomplete information
networks. To the best of our knowledge, this is the first
attempt to formulate and address the incomplete informa-
tion network problem. The main idea of our approach is
that, since the structure of the network has a strong rela-
tion with the attributes of the objects in the network, we
can learn a global distance metric from the local informa-
tion regions with complete linkage information. Then, we
use the global metric to measure the distance between any
pair of nodes in the network. Because the metric is learned
from the structure of the network, the distance will reflect
the hidden linkage structure in the network. Finally, we
propose a distance-based clustering algorithm to cluster the
nodes in the incomplete information network. The different
clustering results are shown in Figure 1. To summarize, this
work contributes on the following aspects:

• We identify and define the problem of community de-
tection in incomplete information networks with local
information regions, i.e., an incomplete information
network that still has a few tiny local regions where
the complete linkage information is available.

• In order to find a measurement, which can reflect the
structural relation between the nodes in incomplete in-
formation networks, we cast the side information of the
network into an optimization problem. Then a metric,
which can be used to measure the distance between
any pair of nodes, is learned.

• Based on the learned metric, we devise a distance-
based modularity function to evaluate the quality of
the communities.

• Finally, we propose a distance-based algorithm DSHRINK
which can discover the hierarchical and overlapped com-
munities. Moreover, in order to speedup the clustering
process, an effective strategy is also taken.

This paper is organized as follows. We introduce the re-
lated work in Section 2. The formal definition of our problem
is presented in Section 3. In Section 4, we introduce how to
make use of the side information to learn a global metric.
In Section 5, we explain the distance-based clustering algo-
rithm. The experimental results are presented in Section 6.
Finally, we conclude in Section 7.

2. RELATED WORK
Community detection in networks and graphs has been

widely studied in recently years[16, 4]. Many approaches
mainly focused on the topological structures based on var-
ious criteria including modularity [19], normalized cut [24],
structural density [30] and partition density [3]. Given a
graph, which is clustered into k communities, the modular-
ity function Q is defined as:

Q =
k

∑

i=1

[

li
L

!
(

di
2L

)2
]

(1)

where L is the number of edges in the graph, li is the number
of edges between nodes within community i, and di is the
sum of the degrees of the nodes in community i. The optimal

WWW 2012 Ð Session: Community Detection in Social Networks April 16Ð20, 2012, Lyon, France

342

	ð�	Z	u	j	.�C
t �� ��

!�	Z	u	j	.�^
t ��

!"#$%"$#&'()&* +,-&'.""#)/$"&'()&*'0,#'1 23'1 4

n1

n2

n3

n4

n5

n6

n8 n9

n7

5"
"#

)/
$"

&
6/

.7
&

-'%
8$

7"
&

#)
19

:$
#'

;&
"<

,-

Mahalanobis distance

Euclidean distance

n1
n2

n3

n4

n5
n6

n8

n9 n7

n1
n2

n3

n4

n5
n6

n8

n9 n7

n1 n2
n3

n4

n5

n6

n8

n9 n7

n1

n2

n3

n4

n5

n6

n8 n9

n7

n1

n2

n3

n4

n5

n6

n8 n9

n7
=

1>
$"

local information regions

n3

Figure 1: Comparison of di! erent clustering methods on
incomplete information networks with missing edges.

resent the relations between them. Usually, it is very
di" cult to resolve all of the links within a food web.
However, it is relatively easier to figure out some local
regions within the food web. Discovering communities
in these incomplete food webs can help us identify mi-
cro ecosystems and the corresponding living organisms
of each micro ecosystem.

Finding communities in incomplete information networks
is a challenging task. Conventional graph-based clustering
methods can not be directly applied to it. The reason is
that traditional graph clustering methods, such as normal-
ized cut based methods [24] and modularity based methods
[19], mainly focus on the topological structure of the net-
work. Since most of the links are absent in incomplete infor-
mation networks, it is impossible to cluster the network with
this kind of methods. As shown in the middle level of Fig-
ure 1, if we cluster the nodes using the traditional attribute
based methods such as k-means, the most likely result is that
we place nodes with the most similar attributes in the same
cluster. However, the nodes which are densely connected
in structure may not necessarily mean they have the most
similar attributes, i.e., they may be only similar on a subset
of the attributes. For example, in the food web networks,
a community usually stands for a micro ecosystem and can
contain various kinds of living organisms, which can have
very di! erent attributes. Recently, some new algorithms
[31] which perform clustering based on both structures and
the attributes of the network are proposed. However, they
can not be applied on incomplete information networks due
to the absence of the complete linkage structure.

Given the assumption that the structure of the network

has a close relation with attributes of each object in the
information network, in this paper, we propose a novel ap-
proach for community detection in incomplete information
networks. To the best of our knowledge, this is the first
attempt to formulate and address the incomplete informa-
tion network problem. The main idea of our approach is
that, since the structure of the network has a strong rela-
tion with the attributes of the objects in the network, we
can learn a global distance metric from the local informa-
tion regions with complete linkage information. Then, we
use the global metric to measure the distance between any
pair of nodes in the network. Because the metric is learned
from the structure of the network, the distance will reflect
the hidden linkage structure in the network. Finally, we
propose a distance-based clustering algorithm to cluster the
nodes in the incomplete information network. The di! erent
clustering results are shown in Figure 1. To summarize, this
work contributes on the following aspects:

¥ We identify and define the problem of community de-
tection in incomplete information networks with local
information regions, i.e., an incomplete information
network that still has a few tiny local regions where
the complete linkage information is available.

¥ In order to find a measurement, which can reflect the
structural relation between the nodes in incomplete in-
formation networks, we cast the side information of the
network into an optimization problem. Then a metric,
which can be used to measure the distance between
any pair of nodes, is learned.

¥ Based on the learned metric, we devise a distance-
based modularity function to evaluate the quality of
the communities.

¥ Finally, we propose a distance-based algorithm DSHRINK
which can discover the hierarchical and overlapped com-
munities. Moreover, in order to speedup the clustering
process, an e! ective strategy is also taken.

This paper is organized as follows. We introduce the re-
lated work in Section 2. The formal definition of our problem
is presented in Section 3. In Section 4, we introduce how to
make use of the side information to learn a global metric.
In Section 5, we explain the distance-based clustering algo-
rithm. The experimental results are presented in Section 6.
Finally, we conclude in Section 7.

2. RELATED WORK
Community detection in networks and graphs has been

widely studied in recently years[16, 4]. Many approaches
mainly focused on the topological structures based on var-
ious criteria including modularity [19], normalized cut [24],
structural density [30] and partition density [3]. Given a
graph, which is clustered into k communities, the modular-
ity function Q is defined as:

Q =
k!

i =1

"
li
L

−

#
di

2L

$ 2
%

(1)

where L is the number of edges in the graph, li is the number
of edges between nodes within community i, and di is the
sum of the degrees of the nodes in community i. The optimal

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France

342

	e	‘	—	}	x	U	Q	Ä	#	�	²	� ��

NEW!

–1=�e Fig. 1

Distance
Metric

Learning!

	Z	u	j
r
>�C
t	-	Ö	À	
	H �'�L�V�W�D�Q�F�H���0�H�W�U�L�F	Q	þ�†��

>ã��

!   	Z	u	j
r
>�C
t	-�i�`	Ô	Ö	-�!�W	Q
9	÷	�	% ��
	€�4	{ 	Ñ	- �'�L�V�W�D�Q�F�H���0�H�W�U�L�F	Q	þ�† ��
��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-2 Community Detection in Incomplete Information Networks !

�B0
�	��C ��
�Z	%	�)	� ��

	€�4	{	Œ	T
Ð	¼��

�C
t	'	�	J ��
	€�4	{	Ñ	-ñ�Þ	� ��

Q
´
í
š	* ��

ñ�Þ	Q
9	÷	�	%	a	›	k	q	œ	¥	b ��

�B	b	›	‡�!�W	��C ��
�Z	%	�	J 	€�4	{	Œ	T
Ð	¼��

	Z	u	j
r
>�C
t	-�i�`	
	H
�
m ��

Á	â	�	J �Q�H�L�J�K�E�R�U
/
	Q	÷	�	%�!�W	-�%�Z
	è	Q
´	² ��

FÂ��FöFÔFúFÔGhG0Fþ2¥7³H���FöFÔG�GhG0Fþ2¥7³FÃ
FøFúG�metricG"�Û*f

1 2 3 4 5 6 7 8 9
0.6

0.7

0.8

0.9

sample size (p%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(a) DBLP-A

1 2 3 4 5 6 7 8 9
0.7

0.8

0.9

1.0

sample size (p%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(b) DBLP-B

Figure 4: Accuracy comparison between different methods (q% = 0.3%).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1.0

local information region size (q%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(a) DBLP-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.70

0.75

0.80

0.85

0.90

0.95

1.00

local information region size (q%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(b) DBLP-B

Figure 5: Accuracy comparison between different methods (p% = 10%).

in the network. We then include q% nodes from its neigh-
bors using BFS search. Common neighbors of any pair of
nodes in the sampled region are further included into the
sampled local region. The above sampling process contin-
ues until we sample p% of the nodes in the network. In
addition to the local regions, we sample the same number
of nodes and use them to generate dissimilar pairwise con-
straints. In the sampled group, the pairs of nodes that are
in different classes are then used as the dissimilar node-pair
set D. More concretely, for DBLP-A and DBLP-B datasets,
we choose the pair of authors, whose research fields are not
overlapped as the dissimilar node pair.

6.3 Evaluation Measures
In order to measure the effectiveness of our approach, we

adopt Purity to evaluate the quality of the communities gen-
erated by different approaches. The definition of purity is
as follows: each cluster is first assigned with the most fre-
quent class in the cluster, and then the purity is measured
by computing the number of the instances assigned with the
same labels in all clusters. Formally:

Purity =
1
n

k!

i =1

max
j

|Ci ! lj | (12)

where {C1, · · · , Ck } is the set of clusters, lj is the j-th class

label. The value of purity ranges from 0 to 1. The com-
munity structure generated by each compared method will
be evaluated using the true label of each node such that
the higher purity value means the higher accuracy of the
method. Since each author can have multiple research areas
as its class labels. We computed the purity of the cluster-
ing results based on each label separately, and the average
results over 6 labels are reported.

6.4 Compared Methods
In order to demonstrate the effectiveness and efficiency of

our approach, we compare our approach with the following
methods:

• Kmeans: We use the default Euclidean metric to mea-
sure the distance between any node xi and the centroid
xk . The K value used in the dataset of DBLP-A and
DBLP-B is 6, which is the same number of clusters
with the ground truth.

• Md+ DSHRINK: We learn a diagonal Mahalanobis
matrixMd and use it as the input ofM for DSHRINK.

• Mf + DSHRINK: We learn a full Mahalanobis matrix
Mf and use it as the input of M for DSHRINK.

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France

347

1 2 3 4 5 6 7 8 9
0.6

0.7

0.8

0.9

sample size (p%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(a) DBLP-A

1 2 3 4 5 6 7 8 9
0.7

0.8

0.9

1.0

sample size (p%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(b) DBLP-B

Figure 4: Accuracy comparison between di! erent methods (q% = 0.3%).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1.0

local information region size (q%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(a) DBLP-A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.70

0.75

0.80

0.85

0.90

0.95

1.00

local information region size (q%)

Pu
ri

ty

kmeans
Md+DSHRINK
Mf+DSHRINK

(b) DBLP-B

Figure 5: Accuracy comparison between di! erent methods (p% = 10%).

in the network. We then include q% nodes from its neigh-
bors using BFS search. Common neighbors of any pair of
nodes in the sampled region are further included into the
sampled local region. The above sampling process contin-
ues until we sample p% of the nodes in the network. In
addition to the local regions, we sample the same number
of nodes and use them to generate dissimilar pairwise con-
straints. In the sampled group, the pairs of nodes that are
in di! erent classes are then used as the dissimilar node-pair
set D. More concretely, for DBLP-A and DBLP-B datasets,
we choose the pair of authors, whose research fields are not
overlapped as the dissimilar node pair.

6.3 Evaluation Measures
In order to measure the e! ectiveness of our approach, we

adopt Purity to evaluate the quality of the communities gen-
erated by di! erent approaches. The definition of purity is
as follows: each cluster is first assigned with the most fre-
quent class in the cluster, and then the purity is measured
by computing the number of the instances assigned with the
same labels in all clusters. Formally:

Purity =
1
n

k
∑

i=1

max
j

|Ci ∩ lj | (12)

where {C1, · · · , Ck} is the set of clusters, lj is the j-th class

label. The value of purity ranges from 0 to 1. The com-
munity structure generated by each compared method will
be evaluated using the true label of each node such that
the higher purity value means the higher accuracy of the
method. Since each author can have multiple research areas
as its class labels. We computed the purity of the cluster-
ing results based on each label separately, and the average
results over 6 labels are reported.

6.4 Compared Methods
In order to demonstrate the e! ectiveness and e" ciency of

our approach, we compare our approach with the following
methods:

• Kmeans: We use the default Euclidean metric to mea-
sure the distance between any node xi and the centroid
xk. The K value used in the dataset of DBLP-A and
DBLP-B is 6, which is the same number of clusters
with the ground truth.

• Md+ DSHRINK: We learn a diagonal Mahalanobis
matrixMd and use it as the input ofM for DSHRINK.

• Mf+ DSHRINK: We learn a full Mahalanobis matrix
Mf and use it as the input of M for DSHRINK.

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France

347

	Z	u	j
r
>	�
Ø)	�	%	A	È�–	è	&	e	‘	—	}	x	U	Q	Å	Ä
í
š��

>ä��Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-2 Community Detection in Incomplete Information Networks !

!   �'�%�/�3	-	y�4	q	Q
9	÷ ��
!   	b	›	‡��
Áé	Ý
¬ ������	€�4	{	-0
�
r
>��
Û
§	°	-�P�A ��
!   	�	�	#	
	-�i�`	Q	í‹ �� ��	I	-	Z	u	j
r
>	.�½	%	J ��

!   �ì
|
P����
€
g	Á	ç	&	Å	Ä	�	� 	e	‘	—	}	x	U	-�–	è ��
�B�Y	e	‘	—	}	x	U	Ô	-	Ê	��]�¢	À	Ù	-	¯	-
¸	¼�C ��
!   	Z	u	j
r
>	Q��	�	€�4	{	-
/ �� �i�`	-	ª	�	�	Q
×	ò	�	�	%�ì
| ��

	Z	u	j
r
>�C
t	-	€�4	{
/	�
Ø)	� �R�U��
�C
t�i�`	�	õ	�	�	%	A �.�P�H�D�Q�V	G	I	È�–	è ��

–1=�e Fig. 4, 5

	b	›	‡�Œ	×	Î	- �%�H�W�Z�H�H�Q�Q�H�V�V���&�H�Q�W�U�D�O�L�W�\
Q
´��

>å��Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality !

!   �%�H�W�Z�H�H�Q�Q�H�V�V���&�H�Q�W�U�D�O�L�W�\�����%�&��������
	€�4	{	-
N
�
�	-
P�� ��
!   	ø	€�4	{	Ñ	-
��¢	ý�\	�	Ì�4	€�4	{	Q	ý
Ó	�	J	Ú
/	*
f

	$	�	%
´	² ��

A
�'�H�J�U�H�H���&�H�Q�W�U�D�O�L�W�\	�	È	�	-	. �$����
�%�H�W�Z�H�H�Q�Q�H�V�V���&�H�Q�W�U�D�O�L�W�\	�	È	�	-	. �%��

�B�K�W�W�S�������Z�Z�Z���R�U�J�Q�H�W���F�R�P���V�Q�D���K�W�P�O	
	H�{	Q
,	÷�C ��

!   	b	›	‡	-�Œ	× 	�	�	J	Ã	¼	Q�s	Ò ��
!   	o�4	i	•	•	•	u	z	¡�4	a	-	b	›	‡	.�Œ	×	�
W	� ��
!   �%�&	-
´	²	*	.	€�4	{	Ñ	-
��¢	ý�\	�
Ñ
� ��

�€ �Œ	×	-	è	*	ø	€�4	{	Ñ	-	ý�\	Q
—
Q
´	�	J	-	.	ª
× ��

NEW!

B

�%�&	-�Œ	×
í
š
�	�	�	J	€�4	{	Q	Ä	#	�	%
—
Q
´��

>Ý>Ü��

!   	b	›	‡	��Œ	×	�	K	�	'	�	*	ø	€�4	{	
	H ��
�%�&	-�Œ	×
í
š
�	�	�	J	€�4	{ 	Q	Ä	#	�	J ��
!   �Œ	×
í
š
�	�	�	J	€�4	{	�	� �%�&	Q
—
Q
´ �€
Q
´�d��
V ��

!   	b	›	‡�Œ	×	*	G	"	%
×�Œ	�	�	"	� �0�L�Q�L�P�X�P���8�Q�L�R�Q���&�\�F�O�H��
���0�8�&��	Ô	-	€�4	{	.�N�Œ	×
í
š
�	�	�	J�O ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality !

Applying the previous algorithms to find influential users or
detect communities over frequently updated graphs such as
a social network graph is inefficient. This is because, calcu-
lating the betweenness centralities of all users in the graph
involves computing the shortest paths between all pairs of
users in the graph. In all previous works, the recomputa-
tion for all the vertices is inevitable whenever a new edge is
inserted to the graph. This recomputation is clearly time-
consuming. As the number of edges in the social network
graph increases over time [19], the need for updating the
betweenness centrality is evident.

It is difficult to update the betweenness centrality, because
even a single edge insertion or a single edge deletion leads
to the changes in many shortest paths in the graph. This
change causes the updates of the betweenness centralities of
many vertices in the graph. It is trivial to see that when
an edge (vi, vj) is inserted to a graph, the shortest path
between vi and vj is changed. Also, the shortest paths that
include the original shortest path from vi to vj are changed.
For example, in Figure 1, let G1 be a graph and G′

1 be an
updated graph of G1. When an edge (v1, v5) is inserted, the
shortest path between v1 and v5 is changed. Also, there are
more shortest paths that are changed e.g., the shortest path
between v12 and v5 and the shortest path between v10 and
v11.

However, we observe that there exist vertices whose be-
tweenness centralities do not change even when the graph
is updated. In Figure 1(b), the betweenness centralities of
v1, v3, v4 and v5 change, while the betweenness centrali-
ties of the other vertices do not change. The betweenness
centralities of v2, v6, v7, v8, v9, v10, v11 and v12 do not
change, because the source-target pairs of original shortest
paths that go through v2, v6, v7, v8, v9, v10, v11 or v12 do
not change even when G1 is updated.

v1

v2 v3 v4 v6

v10

v7

v8

v11 v12

v9

v5

(a) G1

v1

v2 v3 v4 v6

v10

v7

v8

v11 v12

v9

v5

(b) G′
1

Figure 1: An example of a graph update

Based on the above observation, we proposed a Quick al-
gorithm for Updating BEtweenness centrality (QUBE). The
key idea of the proposed algorithm is to perform the be-
tweenness centrality computation on a reduced set of ver-
tices. We first find the set of vertices whose betweenness
centralities can be changed and the set(s) of vertices whose
betweenness centralities do not change. In Figure 1(b),
{ v1,v2,v3,v4,v5} is the set of vertices whose betweenness cen-
tralities can be changed, and { v6,v7,v8,v9,v10} , { v11} , { v12}
are the sets of vertices whose betweenness centralities do
not change. The method of finding these sets is explained in
Section 4, and it is easy to see that the latter three sets cor-
respond to connected components after removing the first
set from G′

1.
We compute the betweenness centrality only on the first

set of vertices. In the previous works, all pair shortest paths

recomputation is necessary to compute the betweenness cen-
trality and the number of shortest paths that need to be
recomputed on G′

1 would be 12 á11/2 = 66. On the other
hand, in our approach, only 5á4/2 = 10 shortest paths need
to be recomputed. Clearly, the smaller the cardinality of
the first set, the shorter the amount of time it would take in
computing the necessary shortest paths.

In order to recompute the betweenness centrality of a ver-
tex in the reduced set, in addition to the betweenness cen-
trality in the reduced set, the number of shortest paths that
satisfy the following conditions needs to be considered.

1. The shortest path goes through the vertex in the re-
duced set.

2. The shortest path’s source or target or both are not in
the reduced set.

The number can be obtained based on the cardinality of
the set(s) of vertices whose betweenness centralities do not
change without actually computing the shortest paths. For
example, the shortest paths from v12 to v6 always go through
vertices in the reduced set. Similarly, the shortest paths
from vi ! { v12} to vj ! { v6, v7, v8, v9, v10} always go
through vertices in the reduced set. Therefore, the number
of shortest paths from vi to vj is a product of the cardinal-
ities of the two sets, which is 5.

The contributions of this paper are as follows.

1. We propose a method that identifies a set of vertices
whose betweenness centralities can be updated and
sets of vertices whose betweenness centralities do not
change, based on the comprehensive analysis of changes
in the betweenness centrality when a graph is updated.

2. We devise aBetweenness Centrality Update Theorem.
The theorem enables an efficient update of between-
ness centrality without traversing the entire graph.
Based on the proposed theorem, we propose an effi-
cient algorithm for updating betweenness centrality.

3. We conduct experiments on various synthetic datasets
as well as large real datasets. The experimental results
show that the incorporation of our algorithm outper-
forms an existing algorithm, in updating the between-
ness centrality. In cases where the size of the reduced
set of vertices is 1/10 of the number of vertices in the
synthetic graphs, the proposed algorithm speeds up
the existing algorithm 577 times on the average. For
real datasets, the proposed algorithm speeds up the ex-
ist algorithm 2 to 2418 times depending on the dataset.

The rest of the paper is organized as follows. In Section 2,
related works on betweenness centrality are reviewed. In
Section 3, we formally define betweenness centrality and
explain basic concepts. In Section 4, we devise a method
which finds the reduced set of vertices whose betweenness
centralities can be updated. Section 5 explains how to effi-
ciently update the betweenness centralities of vertices in the
reduced set. In Section 6, we show experimental results, and
we conclude the paper in Section 7.

!" #$%&'$()*#+
Computation of betweenness centrality has been gaining

much importance in social network analyses, and is widely

WWW 2012 Ð Session: Community Detection in Social Networks April 16Ð20, 2012, Lyon, France

352

Minimum Cycle Basis

Minimum Union Cycle

Applying the previous algorithms to find influential users or
detect communities over frequently updated graphs such as
a social network graph is inefficient. This is because, calcu-
lating the betweenness centralities of all users in the graph
involves computing the shortest paths between all pairs of
users in the graph. In all previous works, the recomputa-
tion for all the vertices is inevitable whenever a new edge is
inserted to the graph. This recomputation is clearly time-
consuming. As the number of edges in the social network
graph increases over time [19], the need for updating the
betweenness centrality is evident.

It is difficult to update the betweenness centrality, because
even a single edge insertion or a single edge deletion leads
to the changes in many shortest paths in the graph. This
change causes the updates of the betweenness centralities of
many vertices in the graph. It is trivial to see that when
an edge (vi, vj) is inserted to a graph, the shortest path
between vi and vj is changed. Also, the shortest paths that
include the original shortest path from vi to vj are changed.
For example, in Figure 1, let G1 be a graph and G!

1 be an
updated graph of G1. When an edge (v1, v5) is inserted, the
shortest path between v1 and v5 is changed. Also, there are
more shortest paths that are changed e.g., the shortest path
between v12 and v5 and the shortest path between v10 and
v11.

However, we observe that there exist vertices whose be-
tweenness centralities do not change even when the graph
is updated. In Figure 1(b), the betweenness centralities of
v1, v3, v4 and v5 change, while the betweenness centrali-
ties of the other vertices do not change. The betweenness
centralities of v2, v6, v7, v8, v9, v10, v11 and v12 do not
change, because the source-target pairs of original shortest
paths that go through v2, v6, v7, v8, v9, v10, v11 or v12 do
not change even when G1 is updated.

! "

! # ! $! % ! &

! "'

! (

!)

! "" ! "#

! *

! +

(a) G1

! "

! # ! $! % ! &

! "'

! (

!)

! "" ! "#

! *

! +

(b) G!
1

Figure 1: An example of a graph update

Based on the above observation, we proposed a Quick al-
gorithm for Updating BEtweenness centrality (QUBE). The
key idea of the proposed algorithm is to perform the be-
tweenness centrality computation on a reduced set of ver-
tices. We first find the set of vertices whose betweenness
centralities can be changed and the set(s) of vertices whose
betweenness centralities do not change. In Figure 1(b),
{ v1,v2,v3,v4,v5} is the set of vertices whose betweenness cen-
tralities can be changed, and { v6,v7,v8,v9,v10} , { v11} , { v12}
are the sets of vertices whose betweenness centralities do
not change. The method of finding these sets is explained in
Section 4, and it is easy to see that the latter three sets cor-
respond to connected components after removing the first
set from G!

1.
We compute the betweenness centrality only on the first

set of vertices. In the previous works, all pair shortest paths

recomputation is necessary to compute the betweenness cen-
trality and the number of shortest paths that need to be
recomputed on G!

1 would be 12 á11/2 = 66. On the other
hand, in our approach, only 5á4/2 = 10 shortest paths need
to be recomputed. Clearly, the smaller the cardinality of
the first set, the shorter the amount of time it would take in
computing the necessary shortest paths.

In order to recompute the betweenness centrality of a ver-
tex in the reduced set, in addition to the betweenness cen-
trality in the reduced set, the number of shortest paths that
satisfy the following conditions needs to be considered.

1. The shortest path goes through the vertex in the re-
duced set.

2. The shortest path’s source or target or both are not in
the reduced set.

The number can be obtained based on the cardinality of
the set(s) of vertices whose betweenness centralities do not
change without actually computing the shortest paths. For
example, the shortest paths from v12 to v6 always go through
vertices in the reduced set. Similarly, the shortest paths
from vi ! { v12} to vj ! { v6, v7, v8, v9, v10} always go
through vertices in the reduced set. Therefore, the number
of shortest paths from vi to vj is a product of the cardinal-
ities of the two sets, which is 5.

The contributions of this paper are as follows.

1. We propose a method that identifies a set of vertices
whose betweenness centralities can be updated and
sets of vertices whose betweenness centralities do not
change, based on the comprehensive analysis of changes
in the betweenness centrality when a graph is updated.

2. We devise aBetweenness Centrality Update Theorem.
The theorem enables an efficient update of between-
ness centrality without traversing the entire graph.
Based on the proposed theorem, we propose an effi-
cient algorithm for updating betweenness centrality.

3. We conduct experiments on various synthetic datasets
as well as large real datasets. The experimental results
show that the incorporation of our algorithm outper-
forms an existing algorithm, in updating the between-
ness centrality. In cases where the size of the reduced
set of vertices is 1/10 of the number of vertices in the
synthetic graphs, the proposed algorithm speeds up
the existing algorithm 577 times on the average. For
real datasets, the proposed algorithm speeds up the ex-
ist algorithm 2 to 2418 times depending on the dataset.

The rest of the paper is organized as follows. In Section 2,
related works on betweenness centrality are reviewed. In
Section 3, we formally define betweenness centrality and
explain basic concepts. In Section 4, we devise a method
which finds the reduced set of vertices whose betweenness
centralities can be updated. Section 5 explains how to effi-
ciently update the betweenness centralities of vertices in the
reduced set. In Section 6, we show experimental results, and
we conclude the paper in Section 7.

2. RELATED WORK
Computation of betweenness centrality has been gaining

much importance in social network analyses, and is widely

WWW 2012 Ð Session: Community Detection in Social Networks April 16Ð20, 2012, Lyon, France

352

×�Œ	�	�	"	� �0�8�&	Ô	- ��
	€�4	{	Ñ	-
��¢	ý�\	Q
—
Q

´	�	% �%�&	Q�Œ	×��

	Z	u	j�à	Ë	*	G
	I	b	›	‡	��Œ	×
	�	K	�	H �<��

j
Û
§�)�L�J������	*�f�	Q�o
8 ��

��š	T	•	f	œ	l	’	-�® �9�������� �Å	-�š	è	& �%�&�Œ	×	Q	ð
 ��

>Ý>Ý��

!   	¯
u	y�4	q	' �� �°�%	-	ð	y�4	q	&	ð�a ��
�B
�	ª��	€�4	{
/ �������������� 	Z	u	j
/ ���������� �C��

!   	b	›	‡�Œ	×	Î	- �%�&	-
—
Q
´	Î	Ñ 	Q�ì
| ��
!   �!!
p	Q
m	J�C�Ë	T	•	f	œ	l	’	-	�	
��š	-	A	-	'
û�Ž ��
!   �B	b	›	‡	��Œ	×	�	K	J	è	*	ø	%
—
Q
´�C ��

!   �� �°�%	-	ð	y�4	q	° ��
!   ���9�� �Å	-	È�š	ò	� ��
o ��
!   �����9���� �Å	-	È�š	ò	� ��
o ��
!   �������� �Å	-	È�š	ò	� ��
o ��

�B�Œ	×
í
š
�	�	�	J	€�4	{
/	*B�Ë�C ��

Session 12: Community Detection in Social networks
ÿ

�� �•	Ã �B	Â	ª�C��

12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality !

