【WWW2012勉強会】

Session 12: Community Detection in Social Networks

担当:馬場雪乃 (東京大学)

Community Detection in Social Networks

 ソーシャルネットワーク上のコミュニティや重要なユーザをグラフ 構造(+a)を使って見つけましょうというセッション

> ソーシャルネットワークの分析・利用に役立つ

- 12-1 Using Content and Interactions for Discovering Communities in Social Networks
 - ▶ ユーザのinterestも考慮したコミュニティ発見
- 12-2 Community Detection in Incomplete Information Networks
 部分的なエッジ情報しかないときのコミュニティ発見
- 12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality
 ノードの重要性の指標"Betweenness Centrality"を、グラフが頻繁に更新される場合でも効率的に計算

12-1 Using Content and Interactions for Discovering Communities in Social Networks

ユーザのinterestも考慮したコミュニティ発見

ユーザ間のインタラクショングラフを利用

- ・ グラフ構造だけでは解決できない
 - 「今までやり取りがないけどinterestは似ている」こともある
- メッセージの中身を見ないといけない

・嬉しい例: 広告を提示するのに効果的なコミュニティを発見

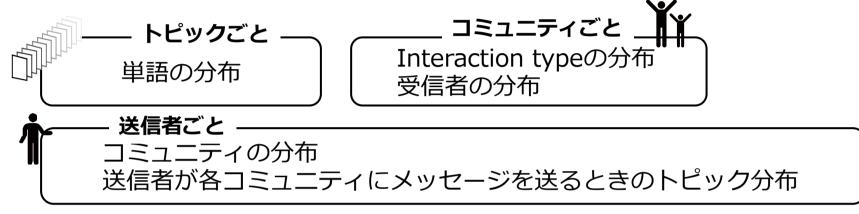
ポイント:以下全てを考慮したコミュニティ発見 Content (メッセージの潜在トピック)

- Link (グラフ構造. 誰から誰にメッセージが送られるか)
- Interaction type (例. Broadcast tweet, reply, RT)

12-1 Using Content and Interactions for Discovering Communities in Social Networks

メッセージの生成モデルを提案

Fopic User Recipient Community Model を提案

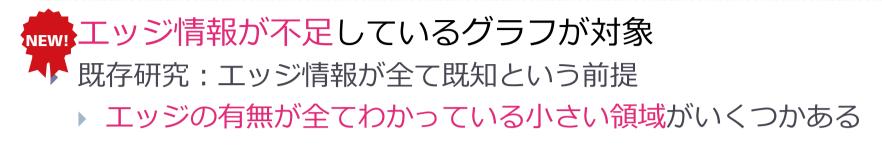


 ▶ 送信者が各メッセージ(本文, interaction type, 受信者)を生成
 1. 送信者のコミュニティ分布に従って、メッセージを送るコミュニティを決定
 2. コミュニティの受信者分布に従って、受信者を決定(複数人)
 3. コミュニティのInteraction type分布に従って、typeを決定
 4. 送信者がコミュニティにメッセージを送るときのトピック分布に従って、 トピックを決定
 5. トピックの単語分布にもとづいて、メッセージ本文を決定

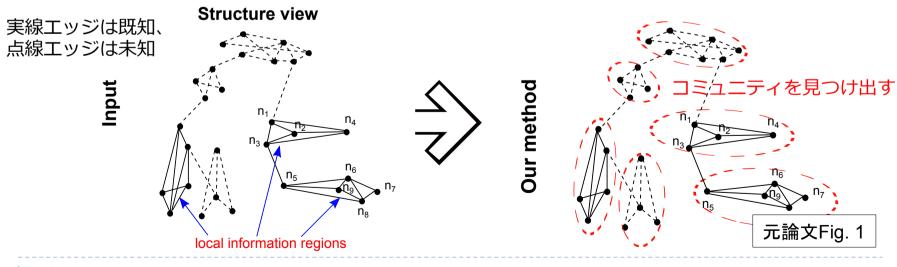
各分布のパラメータを推定すればコミュニティを発見できる

- 12-1 Using Content and Interactions for Discovering Communities in Social Networks 既存モデルより質の高いコミュニティ発見を達成
 - ▶ Twitter, Enron(メール)データセットを用いて実験
 - ・提案モデルで発見したコミュニティの質を既存モデルと比較
 - 2つの指標で既存モデルと比較し提案モデルの優位性を確認
 - CUT (Community-User-Topic): グラフ情報・Interaction Typeなし
 - CART (Community-Author-Recipient):Interaction Typeなし
 - ▶ 評価指標1: Fuzzy Modularity
 - ネットワークの分割の質を測る指標Modularity(「コミュニティ内のエッジ数」ー「エッジをランダムに張った場合の期待値」)を、分割が確率的な場合にも対応できるよう拡張
 - ▶ 評価指標2: Perplexity
 - > 言語モデルの評価指標としてよく利用される
 - テストデータに対してモデルがどれだけ当てはまっているか評価

12-2 Community Detection in Incomplete Information Networks 部分的なエッジ情報しかないときのコミュニティ発見

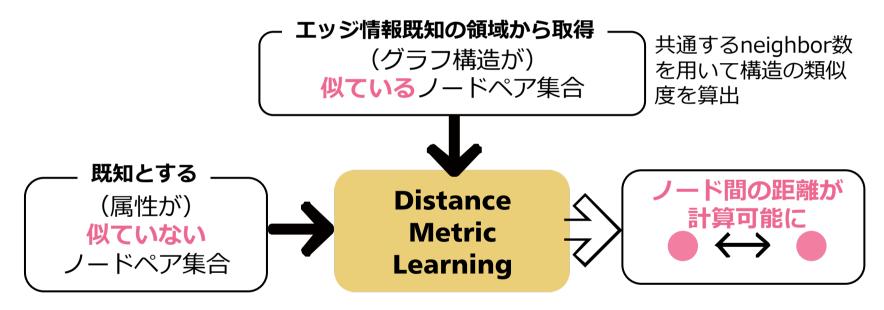


- 例:Terrorist-attack network
 - > ノード:テロ攻撃。同じ組織による攻撃のときエッジを張る
 - ・ 捜査が進まないと同じ組織の攻撃かどうかわからない



12-2 Community Detection in Incomplete Information Networks エッジ情報既知の部分からDistance Metricを学習

 エッジ情報既知の領域内部の構造を利用して ノード間のDistance Metricを学習



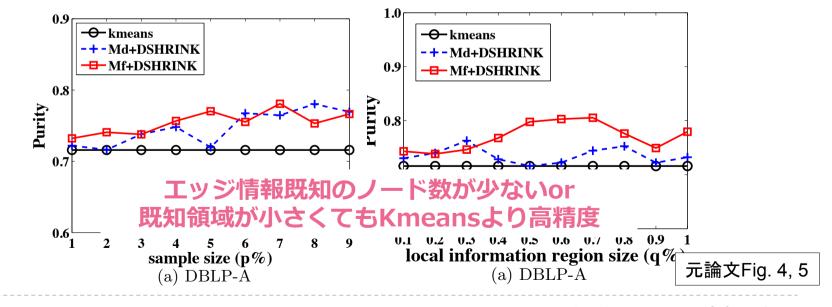
「似ていないペアの距離>似ているペアの距離」 となるmetricを学習

距離を利用してクラスタリング

12-2 Community Detection in Incomplete Information Networks

エッジ情報が少なくても高精度でコミュニティを発見可能

- DBLPのデータを利用
 グラフ:共著関係、ノードの属性情報:論文中の単語
 いくつかの領域を選択、残りのエッジ情報は捨てる
- 評価指標:提案手法で発見したコミュニティの精度 (=コミュニティ内の同じ研究分野の人の割合)
 エッジ情報を残すノードの数,領域の大きさを変化させて評価



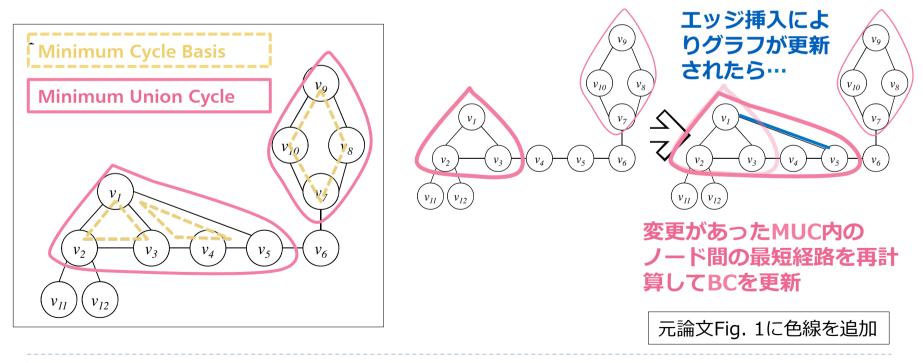
12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality

グラフ更新時のBetweenness Centrality計算

Betweenness Centrality (BC): ノードの重要性の指標 ▶ 全ノード間の最短経路が対象ノードを経由する回数に基 づいて算出 Α B Degree Centralityが高いのはA, Betweenness Centralityが高いのはB (http://www.orgnet.com/sna.htmlから例を引用) **業 グラフの更新**がある場合を想定 ソーシャルネットワークのグラフは更新が多い BCの算出にはノード間の最短経路が必要 →更新の度に全ノード間の経路を再計算するのは大変

12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality BCの更新可能性があるノードを見つけて再計算

- グラフが更新されたときに全ノードから
 BCの更新可能性があるノードを見つける
 - ▶ 更新可能性があるノードだけBCを再計算→計算量削減
- グラフ更新によって変更があったMinimum Union Cycle (MUC)内のノードは「更新可能性がある」



12-3 QUBE: a Quick algorithm for Updating BEtweenness centrality 最速アルゴリズムの2~2000倍の速度でBC更新を実現

- 人工データと8種類の実データで実験
 (最大:ノード数11604,エッジ数65441)
- ▶ グラフ更新時のBCの再計算時間を評価
 - ▶ 厳密解を得る既存アルゴリズムのうち最速のものと比較
 - (グラフが更新される度に全て再計算)
- 8種類の実データ中
 - > 2~7倍の高速化が4件
 - ▶ 13~40倍の高速化が3件
 - 2400倍の高速化が1件
 (更新可能性があるノード数に依存)